Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Iizuka, Tsuyoshi (Ed.)Zircon trace element geochemistry has become an increasingly popular tool to track crustal evolution through time. This has been especially important in early-Earth settings where most of the crust has been lost, but in some fortuitous instances detrital zircons derived from that lost crust have been preserved in younger sediments. To study the formation and geochemical evolution of continental crust from the Hadean to the Paleoarchean, the 3.6 to 3.2 Ga Barberton Greenstone Belt in southern Africa is an excellent target due to its outstanding preservation and presence of detrital zircons that span almost a billion years. Here, we use trace elements, in combination with hafnium and oxygen isotopes, of 3.65 to 3.22 Ga detrital and tuffaceous zircons of the Moodies and Fig Tree groups and compare their geochemistry to previously studied 4.2 to 3.3 Ga detrital zircons from the Green Sandstone Bed of the Onverwacht Group. The major detrital zircon age clusters in the former at 3.55 Ga, 3.46 Ga, and 3.26–3.23 Ga overlap with episodes of TTG emplacement and felsic volcanism in the Barberton area, suggesting a local provenance. In contrast, age clusters at 3.65 Ga and 3.29 Ga of the Moodies and Fig Tree groups as well as 4.2 to 3.3 Ga detrital zircons from the Green Sandstone Bed do not have known intrusive sources and were likely derived from outside the present-day Barberton belt. This indicates that more than half of the felsic igneous events in the detrital zircon record do not have a whole-rock representation that can be directly studied. The similar compositions and inferred crustal evolution histories recorded in zircons from the Fig Tree and Moodies groups, as well as from the Green Sandstone Bed, suggest that they were derived from connected terranes experiencing similar crustal processes diachronously. Together, they show three phases of felsic continent formation, reflecting different crustal processes: (1) long-lived protocrust formed in the Hadean from undepleted mantle sources. These zircons are vastly different from younger zircons and, hence, Barberton TTGs are not good analogues of Hadean crust formation. (2) At 3.8 Ga, onset of significant crustal growth though cyclic juvenile additions and hydrous melting, possibly within a volcanic plateau setting but an arc-like setting cannot be excluded based on this data. (3) Between 3.4 and 3.3 Ga, felsic crust is generated through a previously unrecognized episode of crustal growth by shallow melting of mafic, mantle-derived sources. This is immediately followed by the onset of crustal thickening through the transport of surface-altered, hydrated materials to deep crustal levels. Since there is geological evidence for extension and shortening at that time this may reflect the onset of horizontal movement. Whether this last geodynamic setting reflects modern-style plate tectonics or not, continent formation and the onset of plate tectonics in the Barberton area occurred through complex multi-stage processes spanning almost a billion years, most of which is only accessible through the detrital zircon record.more » « less
-
The initiation of mobile-lid plate tectonics on Earth represented a critical transition towards a more familiar world in terms of surface temperature stabilization, biogeochemical cycling, topography creation, and other processes. Zircon-based estimates of the geomagnetic field intensity have recently been cited as providing evi- dence for the lack of mobile-lid motion between 3.9 and 3.4 billion years ago (Ga). We reanalyze the published dataset of 91 zircon paleointensities from the Jack Hills (Australia) and Green Sandstone Bed (GSB; South Africa) localities within this time interval and, using both analytical and bootstrap resampling approaches, show that the small number of samples result in large uncertainties in implied paleolatitude. Specifically, in more likely sce- narios that do not assume coherent motion for both localities, all latitudinal displacements on Earth are permitted within the 95 % confidence interval. We also examine the less likely scenario that the two landmasses shared a motion history, which increases the data density and presents the best-case scenario for constraining latitudinal motion. In this case, the 95 % confidence interval of the zircon paleointensity data is compatible with the displacements of between 35 % and 52 % of modern continental localities, all of which experience mobile-lid tectonics. Finally, generating expected paleointensity time series for modern continents undergoing mobile-lid motion shows that about two-thirds of these motions would not be resolved by zircon paleointensities, even in the best-case scenario of combining Jack Hills and GSB datasets. All of these analyses assume that these zircons retain a primary paleomagnetic signal, an assertion which is opposed by a number of published zircon magnetism studies. We conclude that Archean zircon paleointensities do not provide evidence for or against mobile-lid plate tectonics prior to 3.4 Ga. Future paleomagnetic investigation of tectonic regime on the early Earth should therefore focus on magnetization directions in well-preserved, oriented whole rocks.more » « less
-
Destabilization of Long‐Lived Hadean Protocrust and the Onset of Pervasive Hydrous Melting at 3.8 GaAbstract The nature of Earth's earliest crust and crustal processes remain unresolved questions in Precambrian geology. While some hypotheses suggest that plate tectonics began in the Hadean, others suggest that the Hadean was characterized by long‐lived protocrust and an absence of significant plate tectonic processes. Recently proposed trace‐element proxies for the tectono‐magmatic settings in which zircons formed are a relatively novel tool to understand crustal processes in the past. Here, we present high‐spatial resolution zircon trace and rare earth element geochemical data along with Hf and O isotope data of a new location with Hadean materials, 4.1–3.3 Ga detrital zircons from the 3.31 Ga Green Sandstone Bed, Barberton Greenstone Belt. Together, the hafnium isotope and trace element geochemistry of the detrital zircons record a major transition in crustal processes. Zircons older than 3.8 Ga show evidence for isolated, long‐lived protocrust derived by reworking of relatively undepleted mantle sources with limited remelting of surface‐altered material. After 3.8 Ga, Hf isotopic evidence for this protocrust is muted while relatively juvenile source components for the zircon's parental magmas and flux‐like melting signatures become more prominent. This shift mirrors changes in Hf isotopes and trace element geochemistry in other Archean terranes between ∼3.8 and 3.6 Ga and supports the notion that the global onset of pervasive crustal instability and recycling—A possible sign for mobile‐lid tectonics—Occurred in that time period.more » « less
An official website of the United States government
